PRINCIPLES OF TRANSITION PATHS

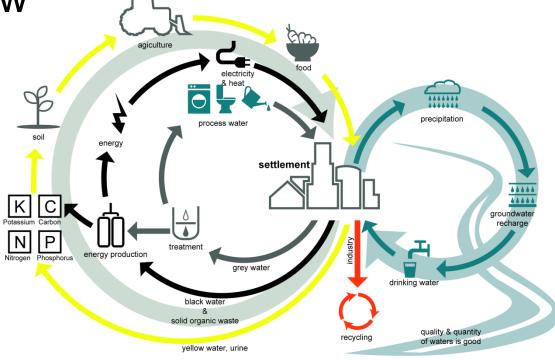
Purposeful Conversion of Water Infrastructure Systems to Multi Stream Variants

Kirsten Maier, Heinrich Söbke, Jörg Londong; Weimar Bauhaus-Institute for Infrastructure Solutions (b.is)

Water Efficiency Conference 05.-07.08.2015, Exeter

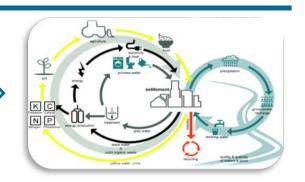
Current Water Infrastructure Systems

- Water-borne sewer systems
- Long amortization period
- Centralized treatment
- Low resource efficiency



New Alternative Sanitation Systems

Separate treatment and reuse of source

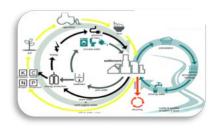


Transition Process

- Complex process
 - Technical Implementation
 - User Acceptance
 - O ...
- Long-time Development
- Specialised Knowledge is Crucial

Knowledge Management Tool

- Requirements
 - Small and manageable instructions
 - Formal Documentation of Procedures and Decisions
- Focus on
 - Design and Implementation Process
 - OTechnical Aspects



Documentation by Patterns

- Pattern:
 - Christopher Alexander, Architect
 - "Each pattern describes a problem, which occurs over and over [...], and then describes the core of the solution to that problem."
 - O Problem-Solution Pair
 - Significant implementation:
 - Software Design

Pattern Structure

- Pattern Name
- Intent
 - Objectives
- Motivation
 - OScenario
- Applicability
 - Situation the pattern can be used

- Components
 - Catalogue of Elements
- Requirements
 - Conditions to be fulfilled
- Related Patterns

Pattern Name

Co-Digestion

Intent

Increase organic load to anaerobic digester

Motivation

 Villages may not produce sufficient amount of faeces to operate a digester sufficiently

Applicability

Situations, when a great amount of co-substrate is available

Components

- Wastewater
- Co-Substrate
- Digestate
- Biogas

es or compulsion.

Temporal com-

mno-

nent

Product

Jtilization technology

• Usage

stablish temporary Graduxceptional state to use

 Adaptation of legal framework to use "faecal" digestate as fertilizer might be necessary

Related Patterns

Requirements

- Gradual migration
- Local exploration

Case Study Village

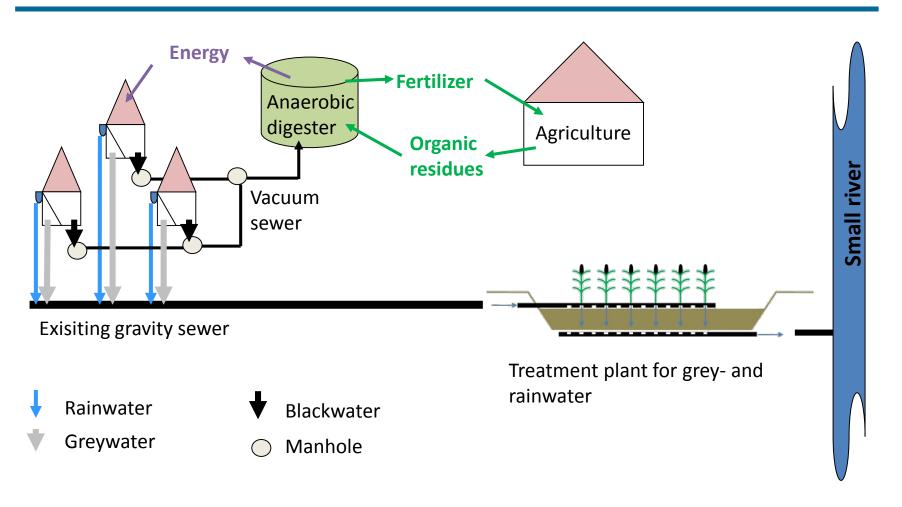
- Eastern Germany
- •Rural area
 - OLarge-scale farms
- Rainwater

 Wastewater

 Settling Pit

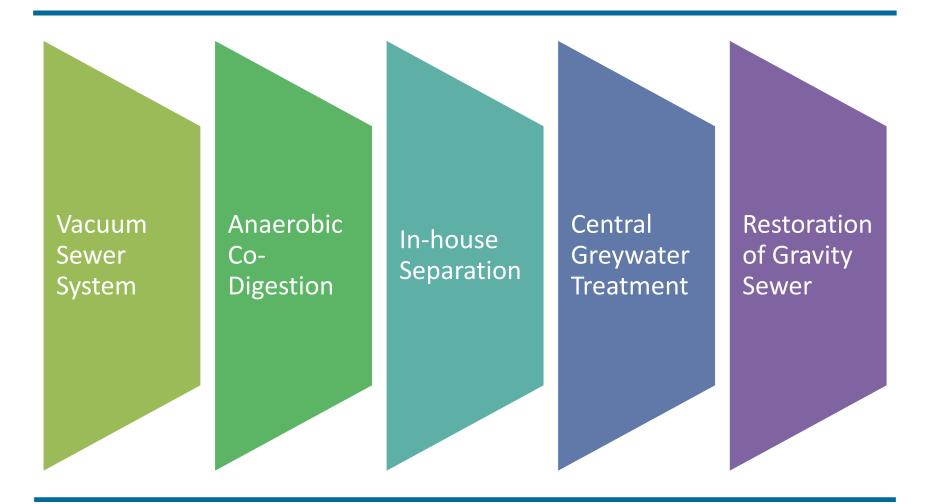
 Gravity Sewer

- Village:
 - **0460** inhabitants
 - O50% not connected to biological wastewater treatment



Applied Patterns

- "Flexible Technologies"
 - Building a Vacuum Sewer System
- "Co-Digestion"
 - Using Agriculture Residues
- "Gradual Migration"
 - In-house separation of Grey- and Blackwater
- "Temporal Component"
 - Temporary use of old gravity system



New Alternative Sanitation System

Transition Path

Discussion: Done...

- Pattern Language
 - ODocumentation methodology
 - Structuring of expert knowledge
 - Implementing NASS by transition paths

Application in Case Study Area

Discussion: But ...

- Pattern Language
 - OSet of Patterns is not complete
 - OPattern description requires adjustments
 - OPattern language needs improvement
- Involving different stakeholders requires different measures
- Engineers are more used to worksheets and standards

Intelligente und multifunktionelle Infrastruktursysteme für eine zukunftsfähige Wasserversorgung und Abwasserentsorgung

Thank you for your attention!

Kirsten Maier
Bauhaus-Institute for Infrastructure Solutions (b.is)
Coudraystraße 7
99423 Weimar, Germany
k.maier@uni-weimar.de